斜管沉淀池具有占地少、造价低、沉淀效率高等特点,被中小型水厂广泛使用。
但由于其自身结构的局限性, 在运行中常存在一些问题,如矾花上浮、积泥堵塞、红虫爆发等。
那么针对这些问题, 现场操作人员究竟该怎么做? 才能快速找到问题根源,并给予精准打击。
造成进厂的原水浊度增高;另外由于近几年原水水质不断恶化,除不断更换净水剂外,投药量也有所增大,从而造成沉淀物增多。
2、吸泥机吸泥口不规范,吸泥效率低,距沉淀池底的距离偏大
吸程达不到底部,排泥效果较差,从而使斜管沉淀池底部大量积泥。如果吸泥口长而窄(V形梯形),会导致泥水水流不畅,易堵塞,吸泥效果较差。
和其他刮泥设备一样, 排泥机吸泥口距沉淀池边墙存在一段距离。由于构筑物结构和设备等因素的影响, 吸泥口到不了墙边,从而造成刮泥死角,使沉淀池两端积泥较多。
4、运行方式不尽合理, 没有根据实际运行情况进行科学调整。
出现沉淀池池底平均积泥厚度过大现象,常常是因为排泥机吸泥口距沉淀池底距离过远,吸程不能达到底部导致的。因此, 可根据实际情况将吸泥口高度降至距沉淀池底部较近的位置。
如某水厂原排泥机吸泥口距沉淀池底部达40 cm,,造成池底平均积泥厚度为70~80cm,后经过改造将吸泥口高度降至距沉淀池底部15 cm,积泥现象有所控制。
可参考《给水排水设计手册》中的《排泥机械部分》, 对吸泥口进行制作更换,使其呈长形扁口形状 ,然后变截面圆滑过渡到圆管形截面, 提高吸泥口吸泥效率。
一方面, 加固排泥机行架,更换排泥机轨道和轮子材料 ,改善排泥机性能。另一方面, 改造延长轨道,使排泥机行程延长 ,从而让吸泥机运行至端部时,吸泥口更靠近内构造柱基础边缘。
由于沉淀池端部有构造柱、构造墩及排泥机底架结构的影响,排泥机吸泥口到不了沉淀池端部边沿,使得该处的泥无法排除。
为解决这一问题, 一些水厂 在沉淀池端部吸泥口刮不到的部位增设带孔的高压水管 ,使泥不至于积厚。
但这种方法要求水压必须稳定,要控制在等强度等射流长的状态,且水压要适当 。由于其在水下,不便观察;而且冲水强度不易控制,强度低了达不到预期效果,高了又会泛起污泥。
因此, 在实际改造中常采取在斜管沉淀池南北两端增设斜墙这一方法。
在沉淀池端部增设斜坡,积到斜墙上的污泥靠重力划到坡角,用吸泥机排走。同时,为了泥能顺利滑下,可考虑在斜坡上设光滑的塑料模板。
虹吸管排泥,启动时用真空泵抽真空形成虹吸,在此基础上增设潜水泵充水, 形成虹吸系统 。其作用有二:一是与真空泵互为备用,并防止在冬季真空泵启动不了的现象;二是利用潜水泵对虹吸管道进行反冲,防止虹吸管道或吸泥口堵塞,改变原管道水流只有一种流向的缺点。
有不少排泥机都设计为运行到沉淀池端部由行程开关转向,从而在沉淀池端部没有停留时间,端部排泥工作时间与中间相比只有一半。
因此,出现沉淀池两端积泥问题时, 可在排泥机控制部分增设时间继电器控制装置 ,根据实际排泥浊度测定,使排泥机到达终点时静止一段时间再转向, 排泥机在沉淀池端部有充分的排泥时间。
藻类代谢产生的有机物对絮凝和过滤有影响,这是因为有机物中的酸性物质与会与混凝剂(铁盐或铝盐)的水解产物发生反应,生成的表面络合物附着在絮体颗粒表面,阻碍了颗粒相互碰撞。 若在冬季或其他不适合藻类生长的条件下,絮凝体依然上浮,则该因素可以排除。
斜管沉淀池在运行过程当中由于没有及时排泥或者排泥不够充分,都会致使整个沉淀池矾花高于可承受限值。同时,如果水厂在实际运行中发生刮泥机故障,停止运行,此段时间矾花上浮现象极为明显。
一般来说,原水中含有的胶体物质很难自然沉降。向原水中投加混凝剂就是为了使胶体物质脱稳,进而形成较大的絮体,使之能够自然沉降,以利于后续处理。
但如果现场作业人员不能根据进水的水质情况及时调整混凝剂的投加量,反而会导致混凝反应不充分, 形成的絮体难以下沉,沉淀效果不理想。主要表现为2个方面:
-
随着混凝剂的投加, 压缩了水中颗粒表面的双电层,使颗粒物发生有效碰撞并长大,而后与气泡相互粘附上浮;
-
当投加量过低时混凝剂不能有效地压缩颗粒物 双电层和影响絮体的长大过程, 微絮体与气泡的碰撞 粘附效率低,从而不能与气泡很好地粘附后上浮。
当颗粒沉降速度与水流上升流速相等时,斜管中会出现肉眼可见的清浊分界面,分界面下部是处于沉淀状态的悬浮区。悬浮区域内的絮体与上升水流接触,就会不断拦截水中的细小颗粒,直至形成大而重的絮体并依靠重力完成沉降。
如果用水量增大,水厂往往超负荷运行,斜管沉淀池中的流速也会相应增大。絮体就难以在斜管内很好的完成沉降 ,很容易被带到清水区并沉积于斜管上部。
原水浊度较高时,形成的絮体粗大、密实,气泡在絮体表面的粘附量有限,所需的混凝剂投加量较大,很难将絮体浮起。
浊度较低时,水中的胶体物质较少,颗粒之间相互碰撞的机会就少,絮凝的机会也相应减少,所以低浊度的原水,混凝效果较差 。这种情况下,混凝剂的投加量不能太少。
值得一提的是, 这些上浮的絮体表面和内部孔隙处常粘附有大量微气泡。 这些气泡的成因主要为以下3点:
-
池底沉泥厌氧发酵。 沉淀池的穿孔排泥管排泥不彻底,导致积泥区沉泥聚集板结,时间一长厌氧发酵,产生甲烷、二氧化碳及少量的硫化氢等气体。
-
藻类作用。 藻类呼吸、光合作用强烈,可观测到产气现象。
-
水泵及管路系统漏气。 具体表现为泵体本身漏气、水泵吸水管喇叭口进气、水泵吸水管漏气。
在沉淀池出水侧沿池长加置一条集泥槽,槽中置有穿孔吸泥管,穿孔排泥管与刮泥机联动 ,当刮泥板将泥刮至集泥槽边缘时,大量污泥涌入集泥槽,开启排泥阀,将稀释的泥水抽吸输送至池外排泥渠。根据原水水质、沉淀池出水水质情况,调整排泥时间。
向原水中投加粘土可以增大水中的颗粒浓度,增加颗粒间相互碰撞的机会 ,从而提高混凝效果。该办法在不投入大量人力的前提下是可行的,也可考虑用计量泵投加PAM等助凝剂。
在上述原因分析中已经提及控制混凝剂的投量可以有效抑制絮体上浮。絮体上浮的现象一般都发生于原水低浊期间。
因此,为防止溶入大量气体的原水直接进入滤池过滤发生“气阻”现象, 可以根据实际情况控制混凝剂的投量采取经反应池微絮凝后直接过滤的处理方法,或者采用原水经反应沉淀池曝气后在滤前加药直接过滤的处理方法。
同时,也可 采用SCD控制投药。 SCD(流动电流检测器)是直接测量混凝剂投加效果及调节混凝剂投加量的在线仪表,可以从检测出的流动电流值与设计给定值比较得知混凝剂投加量的多少,通过数学模型计算分析,调整投药装置的运行工况,及时改变混凝剂的投加量,取得理想的混凝效果。
满负荷运行时, 打开两池之间的联通阀以平衡两池的进水量,尽可能使两池在各自的处理能力范围内工作,避免超负荷运行 ;同时调度部门统筹安排进水量,减少了进水量的大幅度变化,保障了沉淀池出水稳定。
受原水浊度、藻类和有机物含量浓度变化影响。可考虑将原有的斜管沉淀池改造成异向流斜管浮沉池, 浊度高时用斜管沉淀,浊度低时用气浮 。
全部回复(1 )
只看楼主 我来说两句 抢板凳